

Temperature dependence of surface strain damage in rf cavities

R.B.Palmer, R. Fernow, J Gallardo, D Stratakis

Friday NFMCC Meeting

3/20/09

- Introduction
- Rf in magnetic fields problem
- High frequency surface damage problem
- Appendix: Assumed material parameters

Introduction

- Cavities in specified magnetic fields do work
- ullet But achieved fields are down by "only" a factor of pprox 2
- Is there a way to raise the damage threshold?

Two Related problems

- In both, damage probably caused by fatigue from repeated strains induced by heating
- In both, it should be reduced by
 - Choice of materials
 - Lower initial temperature

Choice of materials

- For both problems we seek
 - Low coefficients of expansion
 - High specific heat
 - High thermal conductivity
- For the magnetic field problem
 - Low density and resulting lower beamlet energy loss
- For the high frequency surface damage problem
 - High electrical conductivity

Materials considered:

- 1. Copper
- 2. Beryllium for its very low density and experimental lack of damage
- 3. Aluminum for its lower density than copper

In each case we will consider

- Very pure materials with Relative Resistance Ratios (RRR) over 1000
- Less pure materials with Relative Resistance Ratios (RRR) around 100

Problem 1) Strains due to Beamlets

$$\Delta T \propto \frac{dE}{dx} \int_{0}^{t} \frac{Q(T)}{A_{beam} \rho C_{p}(T)} dt$$

$$S \propto \frac{dE}{dx} \int_{0}^{t} \frac{Q(T) \alpha(T)}{A_{beam} \rho C_{p}(T)} dt$$

Where $\alpha(T)$ is the coefficient of thermal expansion, and A_{beam} is the transverse area of the beamlet at the surface, and Q(T) is a factor to include thermal diffusion that increases the transverse area where the heat is deposited

- ullet We assume the rf pulse length t is NOT increased even when low temperatures give longer decay times au
- This is an approximate calculation because it ignores the variations in temperature with lateral diffusion
 - It is a good approximation if $\alpha(T)/C_p(T)$ and Q(T) do not change much over the range of T in the integration
 - SLAC sees damage when $\Delta T \approx 45$ degrees starting from 273 deg. Over this range these functions do not change much and the approximation is good. It is less so at lower temperatures

Correction Q(T) for thermal diffusion

Beamlet including Diffusion spread of heat spread from phase

$$d \times d > d > r$$

a)
$$dx > d < r$$
 b) $dx > d > r$ c) $dx < d > r$

a)
$$Q(T) = 1$$
 b) $Q(T) = \frac{d(273)}{d(T)}$ c) $Q(T) = \frac{dx \ r_{beam}}{d(T)^2}$

$$c) Q(T) = \frac{dx r_{beam}}{d(T)^2}$$

where d, the thermal diffusion length:

$$d(T) = \sqrt{\frac{K(T)\tau}{\rho C_p(T)}}$$

- Fit to data had assumed a)
- But recent simulations suggest b) more likely at 805 MHz,
- \bullet c) gives breakdown independent of B Not as observed

e.g. 805 MHz: for
$$B=3$$
 (T) $\mathcal{E}=17$ (MV/m) dx=100 (μm) d=48 (μm) rj10 (μm)

Temperature Rises

- ullet Normalized to give ΔT of 45 degrees for Cu at room T
- This is case that caused damage in SLAC surface heating exp.

Strains

- Be has much less strain at room T
- Al somewhat less strain at room T
- In case a): no change with temperature
- cases b) and c) less strain at low T

Relative rf gradients for same strain

Observations

- At room temperature
 - Aluminum damage at 1.4 times rf gradient
 Not enough
 - Beryllium damage at 3 times rf gradient
 Enough
- If case a) $r_{beam} >$ diffusion length (assumed in paper)
 - No gain with lower operating temperature
- In most likely case b)
 - Gain with Copper of ≈ 1.3 at 70 K o Not enough
 - Gain with Aluminum of ≈ 2 at 70 K^o Enough
 - Gain with Beryllium of pprox 4.5 at 70 K o Not needed

Conclusions on rf breakdown in magnets problem

- Beryllium is the ideal material
 - Would probably solve the problem even at room temperature
 - Would certainly solve it at nitrogen temperature
- Aluminum is significantly better than Copper
 - If cold, it would probably solve the problem
 - If multipacter is a problem, a thin copper layer would be ok

Advantages over Magnetic Insulation

- Pillbox cavities have better Shunt Impedance
- Pillbox cavities give more acceleration for same surface fields
- Muon transmission is better with less rapid field changes
 - Simulations of RFOFO Guggenheim 6D cooling gives unacceptable losses
 - A Neutrino Factory front end using magnetic insulation appears difficult

Possible Experiments

- 1. Cool and test refurbished 805 MHz Pillbox Cavity to Nitrogen temperatures
- 2. Build and test an 805 MHz Al cavity at room and Nitrogen Temperatures
- 3. Build a Be faced 805 MHz cavity and test in 'non-flip' field not testable at low temperatures because of differential expansions

Problem 2) Surface rf ohmic heating

- At frequencies of, and above, 10 GHz, with normal pulse lengths, breakdown appears initiated when surface heating caused fatigue damage
- SLAC experiments show damage in soft copper when $\Delta T \geq 45$ degrees Ohmic heating in skin depth:

$$\frac{dU}{dA} = k_1 H^2 \sqrt{R(T) f} dt = k_2 \mathcal{E}^2 \sqrt{R(T) f} dt$$

 $H=\mbox{local rf magnetic field},~\mathcal{E}=\mbox{accelerating gradient},~R(T)=\mbox{is electrical resistivity}$

The heat is disipated in a thermal diffusion length depth d(T)

$$d(T) = \sqrt{\frac{K(T)\tau}{\rho C_p(T)}}$$

K(T) is thermal conductivity, ρ is the density, $C_p(T)$ is specific heat,

$$\tau = \tau_{805} \left(\frac{805(MHz)}{f} \right)^{1.5}$$

where au_{805} is taken to be 20 $\,\mu$ sec.

Surface temperature and strain

- ullet Assume rf pulse length au not changed as a function of temperature, even though the natural "filling time" is
- Minimizes the cryogenic load from ohmic losses in the cavities

$$T(t) = T_1 + \int_{t=0}^{\tau} \left(\frac{k_2 \mathcal{E}^2 \sqrt{R(T)}}{\rho C_p(T) \sqrt{\frac{\tau K(T)}{\rho C_p(T)}}} \right) dt$$

where k_2 is a constant, set to give 45 degree rise with SLAC parameters. The resulting strain S is:

$$S = \int_{t=0}^{\tau} \alpha(T) \left(\frac{k_2 \mathcal{E}^2 \sqrt{R(T)}}{\rho C_p(T) \sqrt{\frac{\tau K(T)}{\rho C_p(T)}}} \right) dt$$

where $\alpha(T)$ is the expansion coefficient.

Temperature rises

Strains vs. Temperature

Relative gradients for the same strain

- No advantage of AI of Cu
- Big gain in cooling Cu
- Even greater gain with cold Be

Conflict with CLIC resilts ?¹

- CLIC observed no temperature dependence on a 30 GHz copper cavity excited by an 8 nsec bunch train
- But their pulse length (8 nsec rise, immediate fall) was much less than:
 - a) 1.5 (μsec) as used by SLAC
 - a) a normal 3 imes au fill time, and assumed here
 - b) 70 nsec flat top, as required by CLIC

• Sami Tantawi (SLAC) will test a 12 GHz cavity with no surface fields²

¹H. H. Braun et al; Phys Rev Letters; 90, 224801 (2003)

²S. G. Tantawi et al; Proc PAC07

Conclusion on rf ohmic heating

- Significant suppression of damage, from cyclical surface ohmic heating, if a Cu cavity is operated at lower temperatures.
- No gain from Aluminum
- No gain from Be at room temperature, but superior at low temperatures
- The gain by cooling Cu will soon be tested at SLAC using their cavity with no surface electric fields
- ullet For high frequency cavities (f > 10 GHz) this should translate into reduced damage or higher operating gradients, especially for longer pulse lengths than used in CERN test

Appendix: Material parameters

- ullet Assume Energy loss dE/dx, density ho are independent of temperature
- ullet Look at resistivity R(T) for different purities and resulting RRR's [R(273)/R(4)]
- ullet Assume Thermal conductivity $K(T) \propto T/R(T)$

Fig. 1

Fig. 2

